Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cnt4714/fall2010

Department of Electrical Engineering and Computer Science
University of Central Florida

CNT 4714: Java Networking Part 3 Page 1 Mark Llewellyn ©

More Detalls on Establishing a
Server Using Stream Sockets

« Step listocreate a ServerSocket object.

* Invoking a ServerSocket constructor such as,

ServerSocket server =

new ServerSocket (portNumber, queuelength);

registers an available TCP port number and specifies

the number of clients that can walit to connect to the
server (i.e., the queue length).

CNT 4714: Java Networking Part 3 Mark Llewellyn ©

More Detalls on Establishing a
Server Using Stream Sockets (cont)

The port number is used by the clients to locate the server
application on the server computer. This is often called the
handshake point.

If the queue is full, the server refuses client connections.

The constructor establishes the port where the server waits
for connections from clients — a process known as binding
the server to the port.

Each client will ask to connect to the server on this port.
Only one application at a time can be bound to a specific port
on the server.

CNT 4714: Java Networking Part 3 Mark Llewellyn ©

More Detalls on Establishing a
Server Using Stream Sockets (cont)

Port numbers can be between 0 and 65,535. Most
OS reserve port numbers below 1024 for system
services such as email, and Internet servers.
Generally, these ports should not be specified as
connection ports in user programs. In fact, some OS
require special access privileges to bind to port
numbers below 1024.

Programs manage each client connection with a
Socket object.

#
CNT 4714: Java Networking Part 3 Page 4 Mark Llewellyn © @j

More Detalls on Establishing a

Server Using Stream Sockets (cont)

In Step 2, the server listens indefinitely (is said to block) for
an attempt by a client to connect. To listen for a client
connection, the program calls ServerSocket method

accept, asin,
Socket connection = server.accept();

which returns a Socket when a connection with a client is
established.

The Socket allows the server to interact with the client.

The interactions with the client actually occur at a different
server port from the handshake port. This allows the port
specified in Step 1 to be used again in a multi-threaded
server to accept another client connection. We’ll see an
example of this later in this set of notes.

#
CNT 4714: Java Networking Part 3 Page 5 Mark Llewellyn © @j

More Detalls on Establishing a
Server Using Stream Sockets (cont)

In Step 3, the OutputStream and InputStream objects
that enable the server to communicate with the client by
sending and receiving bytes are established.

The server sends iInformation to the client via an

OutputStream and received information from the client
viaan InputStream.

The server invokes the method getOutputStream on the
Socket to get a reference to the Socket’s OutputStream
and invokes method getInputStream onthe Socket to
get a reference to the Socket’s InputStream.

CNT 4714: Java Networking Part 3 Mark Llewellyn ©

More Detalls on Establishing a
Server Using Stream Sockets (cont)

If primitive types or serializable types (like String)
need to be sent rather than bytes, wrapper classes are

used to wrap other stream types around the
OutputStream and InputStream o0Dbjects

assoclated with the Socket.

ObjectInputStream input =
new (ObjectInputStream (connection.getInputStream()) ;

ObjectOutputStream output =
new (ObjectOutputStream (connection.getOutputStream()) ;

CNT 4714: Java Networking Part 3 Mark Llewellyn ©

More Detalls on Establishing a
Server Using Stream Sockets (cont)

The beauty of establishing these relationships is that
whatever the server writes to the
ObjectOutputStream IS set via the
OutputStream and Is available at the client’s
InputStream, and whatever the client writes to its
OQutputStream (with a corresponding
ObjectOutputStream) IS available via the
server’s InputStream.

The transmission of the data over the network Is
seamless and Is handled completely by Java.

#
CNT 4714: Java Networking Part 3 Page 8 Mark Llewellyn © @j

More Detalls on Establishing a
Server Using Stream Sockets (cont)

With Java’s multithreading, you can create multithreaded

servers that can manage many simultaneous connections with
many clients.

A multithreaded server can take the Socket returned by each

call to accept and create a new thread that manages network
|/O across that Socket.

Alternatively, a multithreaded sever can maintain a pool of threads (a
set of already existing threads) ready to manage network /O across the
new Sockets as they are created. In this fashion, when the server
receives a connection, it need not incur the overhead of thread creation.
When the connection is closed, the thread is returned to the pool for
reuse.

#
CNT 4714: Java Networking Part 3 Page 9 Mark Llewellyn © @j

More Detalls on Establishing a
Server Using Stream Sockets (cont)

Step 4 Is the processing phase, in which the server
and client communicate via the OutputStream

and InputStream objects.

In Step 5, when the transmission is complete, the

server closes the connection by invoking the close
method on the streams and on the Socket.

CNT 4714: Java Networking Part 3 Page 10 Mark Llewellyn ©

More Detalls on Establishing a Client
Using Stream Sockets

Step 1 1s to create a Socket object to connect to

the server. The Socket constructor established the
connection with the server.

« For example, the statement

Socket connection = new Socket (serverAddress, port);

uses the Socket constructor with two arguments —
the server’s address and the port number.

« |f the connection attempt is successful, this
statement returns a Socket.

CNT 4714: Java Networking Part 3 Page 11 Mark Llewellyn ©

More Detalls on Establishing a Client
Using Stream Sockets (cont)

 |If the connection attempt fails, an instance of a
subclass of IOException, since so many program
simply catch IOException.

An UnknownHostException occurs specifically
when the system Is unable to resolve the server
address specified In the call to the Socket
constructor to a corresponding IP address.

CNT 4714: Java Networking Part 3 Page 12 Mark Llewellyn ©

More Detalls on Establishing a Client
Using Stream Sockets (cont)

In Step 2, the client uses Socket methods
getInputStream and getOutputStream to
obtain references to the Socket’s InputStream
and OutputStream.

If the server iIs sending information in the form of
actual types (not byte streams) the client should
receive the information in the same format. Thus, if
the server sends values with an
ObjectOutputStream, the client should read

those values with an ObjectInputStream.
-

More Detalls on Establishing a Client
Using Stream Sockets (cont)

Step 3 is the same as in the server, where the client and the server
communicate via InputStream and OutputStream objects.

In Step 4, the client closes the connection when the transmission is
complete by invoking the close method on the streams and on the
Socket.

The client must determine when the server is finished sending
Information so that it can call close to close the Socket
connection.

For example, the InputStream method read returns the value -1
when it detects end-of-stream (also called EOF). If an
ObjectInputStream IS used to read information from the
server, an EOFException occurs when the client attempts to
read a value from a stream on which end-of-stream is detected.

#
CNT 4714: Java Networking Part 3 Page 14 Mark Llewellyn © @j

UDP Server

Packet received from Client:
From host: 1132.170.107.73
2 Host port: 4085
ML ength: 29

This is my first UDP message.
Echo data to client...Packet sent
Packet received from Client:
: From host: 1132170.107.73
& Host port: 4085
‘ Length: 30
@ Containing:
c This is my second UDP message.

Echo data to client...Packet sent

'_J_ Packet received from Client:
& From host 1132.170.107.73

This is my third UDP message. 30 -
2005

Echo data to client...Packet sent

il Packet received from Client:

This is my fourth UDP message.

Echo data to client...Packet sent

<. UDP Client
This is my fourth UDP message.

Sending packet containing: This is my first UDP message.
Facket sent

FPacket received from Server:
WFrom host: M132.170107.73
HHost port: 5000
HLength: 29
FPacket Contains:
This is my first UDP message.
Sending packet containing: This is my second UDP message.
Facket sent

FPacket received from Server:
From host: 1132170.107.73

Facket Contains:
This is my second UDP message.

Sending packet containing: This is my third UDP message.
Facket sent

FPacket received from Server:
From host: 1132170.107.73

FPacket Contains:

This is my third UDP message.
Sending packet containing: This is my fourth UDP message.
Facket sent

FPacket received from Server:
From host: 1132170107.73

B

to G5 Shortcut

schedules T Ena LalSEETE N D005, Dept

- Yo~ . =

annualrep

et received from Client:
 host: 1132.170.107.73
port: 1514
th: 28
aining:
First message from client #1

datato client...Packet sent

et received from Client:
 host: 1132.170.107.73
port: 1515
th: 28
aining:
First message from client #2

datato client...Packet sent

et received from Client:
 host: 1132.170.107.73
port: 1514
th: 29
aining:
Second message from client #1

datato client...Packet sent

et received from Client:
 host 1132.170107.73
port: 1515
th: 29
aining:
Second message from client #2

datato client...Packet sent

LASP MetBeans IDE
3.6

= UDP Client

Second message from client #1

UDP Client

Second message from client #2

Sending packet containing: First message from client #1
Packet sent

Packet received from Server:
Fraom host: 1132.170.107.73

First message from client #1
Sending packet containing: Second message from client #1
Packet sent

Packet received from Server:
Fram host: 1132.170.107.73

Second message from client #1

Sending packet containing: First message from client #:
FPacket sent

FPacket received from Server:
From host M132.170.107.73

FPacket Contains:

First message from client #2

Sending packet containing: Second message from clien
FPacket sent

FPacket received from Server:
From host: M132.170.107.73

FPacket Contains:

Second message from client #2

o

Shortcut to G5 Shorkcut

Dept annualrep

£ UDP Client
LIDP Server This is rmy fourth UDF messane.

Packet received from Client; Sending packet containing: This is my first LIDP message.
From host M 32470.107.73 Facket sent

Facket received from Senrer:|
From host: M32170107.73

This is vy first UDP message.

Echo data to client...Packet sent
Thig is my first LIDP messane.

Packet received from Client; Sending packet containing: This is my second UDP message.
From host M 32470.107.73 Facket sent

Facket received from Serer:
Fram host M 32170107.73

This iz rmy second LIDP message.

Echo data to client...Packet sent
Thig is my second UDF message.

Facket received from Client:
From host 1 32470107.73 =ending packet containing: This is my third UDP message.
Facket sent

Facket received from Serer:

This is my third UDP message. Fram host M 32170107.73

Echo data to client...Packet sent
FPacket Contains:

Packet received fram Client: This is roy third UDP message.
From haost M 32470107.73 Sending packet containing: This is my fourth UDF message.
Facket sent

Facket received from Serer:

Thig is my fourth UDF message. Fram host M 32170107.73

Echo data to client...Packet sent
FPacket Contains:

This is my fourth LUDF messane.

CNT 4714: Java Networking Part 3 Page 17 Mark Llewellyn ©

Using Java’s High-level Networking
Capalbllities

« As we saw earlier, the TCP and UDP protocols are at the
transport layer within the Internet Reference Model. As far as
Java Is concerned, these provide “low-level” networking
capability.

« Java also provides application layer networking protocol
capabilities to allow for communication between applications.

* In the examples we have seen so far, it was the developer’s
responsibility to establish a connection between the client and
the server (in the case of the UDP protocol, its more a process
of establishing the sockets since there i1s no connection
between the client and the server in this protocol).

¢

CNT 4714: Java Networking Part 3 Page 18 Mark Llewellyn © @/'

Using Java’'s High-level Networking
Capabllltles (cont.)

« The next example illustrate Java’s application layer
capabilities which remove the responsibility of
establishing the network connection from the
developer.

» The example relies on a Web browser to establish the
communication link to a Web server. (This one uses
an applet to open a specific URL. Using a URL as an
argument to the showDocument method of
Interface AppletContext, causes the browser In
which the applet Is executing to display that
resource.)

’

CNT 4714: Java Networking Part 3 Page 19 Mark Llewellyn © @/'

Example 1 — SiteSelector Applet

<html>
<title>Site Selector</title>
<body>
<applet code = "SiteSelector.class" width = "300" height = "75">
<param name = "title0" value = "Java Home Page">
<param name = "location0" value = "http://www.java.sun.com/">
<param name = "title1" value = "CNT 47174 Home Page">
<param name = "locationl" value = "http://www.cs.ucf.edu/courses/cnt4714/fall2010">
<param name = "title2" value = "World Cycling News">
<param name = "location2" value = "http://www.cyclingnews.com/">
<param name = "title3" value = "Formula 1 News">
<param name = "location3" value = "http://www.formulal.com/">
</applet>
</body>
</html>

HTML document to load the SiteSelctor Applet

CNT 4714: Java Networking Part 3 Page 20 Mark Llewellyn ©

Example 1 — SiteSelector Applet (ont)

/I SiteSelector.java

/l This program loads a document from a URL.
import java.net.MalformedURLEXxception;
import java.net.URL;

Import java.util. HashMap;

import java.util. ArrayList;

import java.awt.BorderLayout;

import java.applet. AppletContext;

import javax.swing.JApplet;

import javax.swing.JLabel;

import javax.swing.JList;

import javax.swing.JScrollPane;

import javax.swing.event.ListSelectionEvent;
import javax.swing.event.ListSelectionListener;

public class SiteSelector extends JApplet

{
private HashMap< Object, URL > sites; // site names and URLS
private ArrayList< String > siteNames; // site names
private JList siteChooser; // list of sites to choose from

I/ read HTML parameters and set up GUI

CNT 4714: Java Networking Part 3 Page 21 Mark Llewellyn ©

Example 1 — SiteSelector Applet (ont)

public void init()
{
sites = new HashMap< Object, URL >(); // create HashMap
siteNames = new ArrayL.ist< String >(); // create ArrayL.ist
// obtain parameters from HTML document
getSitesFromHTMLParameters();
Il create GUI components and layout interface
add(new JLabel("Choose a site to browse"), BorderLayout. NORTH);
siteChooser = new JList(sittNames.toArray()); // populate JList
siteChooser.addL.istSelectionListener(
new ListSelectionListener() // anonymous inner class
{ //goto site user selected
public void valueChanged(ListSelectionEvent event)
{
/I get selected site name
Obiject object = siteChooser.getSelectedValue();
/I use site name to locate corresponding URL
URL newDocument = sites.get(object);
/I get applet container
AppletContext browser = getAppletContext();
/[tell applet container to change pages
browser.showDocument(newDocument);
} // end method valueChanged
} // end anonymous inner class
}; // end call to addListSelectionListener

CNT 4714: Java Networking Part 3 Page 22 Mark Llewellyn ©

Example 1 — SiteSelector Applet (ont)

add(new JScrollPane(siteChooser), BorderLayout. CENTER);
} // end method init
// obtain parameters from HTML document
private void getSitesFromHTMLParameters()
{
String title; // site title
String location; // location of site
URL url; // URL of location
int counter = 0; // count number of sites
title = getParameter("title™ + counter); // get first site title
// loop until no more parameters in HTML document
while (title '=null)
{
// obtain site location
location = getParameter("location" + counter);
try // place title/URL in HashMap and title in ArrayL.ist
{
url = new URL(location); // convert location to URL
sites.put(title, url); // put title/URL in HashMap
siteNames.add(title); // put title in ArrayList
}//end try
catch (MalformedURLEXxception urlException)
{
urlException.printStackTrace();
} // end catch

__---» counter++;
title = getParameter("title" + counter
); /] get next site title
} // end while
} // end method
getSitesFromHTMLParameters
} // end class SiteSelector

CNT 4714: Java Networking Part 3 Page 23

Mark Llewellyn ©

& Site Selector - Windows Internet Explorer

GO - @ C\Courses\CNT47 » -

File Edit View Favorites Tools
Google | & ~

Help

IEI Search + » ¢, - signln -
& & (g -lwon. (@S x| | B @&~ .

Choose a site to browse
Java Home Page

CNT 4714 Home Page
World Cycling News

L

M Computer | Protected Mode: Off

Original SiteSelector Applet before
user selected World Cycling News as
the resource to be opened. Once
selected this brought up the webpage
shown behind the applet invocation.

CNT 4714: Java Networking Part 3

Page 24 Mark Llewellyn ©

€ Cycling News & Race Results com -

lorer

@ S I http://www.cyclingnews.com bl B
File Edit View Favorites Tools Help

Google E| 4 Search - { S~ e Sha

<.¢ Favorites Jhy @8 Suggested Sites v & | Free Hotmail g | Web Slice Gallery v "5 KeepVi

@ Cycling News & Race Results | Cyclingnews.com

(S

—

& Site Selector - Windows Internet Explorer

V-

& C:\Courses\CNT 47 ~ | 4}| x | | Google

THE WORLD CENTRE OF CYCLING

cyclingnews.com

ome Road Mountain Bike Track

-, - R Ro -,
d O

Races & Results

Show headlines

A\

Cyclo-cross

& FPhoto =
Aust EST Sep 15 06:07 Euro CEST Sep 14 22:07 UK BST Sep 14 21:07 USA EDT Sep 14 16:07 Upd3ted 4 mins ago Podcast Join the forum

File Edit View Favorites Tools Help

Google| & - IEI Search 1* » & - Signln -
n . _] »
e Rt 22|+ | on CNN... | & Si.. il

Choose a site to browse

Java Home Page ||

CNT 4714 Home Page =

World Cycling News =]

(M Computer | Protected Mode: Off +100% -

Original SiteSelector Applet before
user selected World Cycling News as

: 0 the resource to be opened. Once
selected this brought up the webpage
‘ ¢| shown behind the applet invocation.
. . Exclusive Eurobike Footage \,
2D L _ AN
Tech Powered
News Last updated: September 14, 21:00 Editions >
I 3
€ Internet | Protected Mode: Off ‘a ¥ |100% ~

CNT 4714: Java Networking Part 3

Page 25

Mark Llewellyn ©

Secure Sockets Layer (SSL)

Most e-business uses SSL for secure on-line transactions.

SSL does not explicitly secure transactions, but rather secures
connections.

SSL implements public-key technology using the RSA
algorithm (developed in 1977 at MIT by Ron Rivest, Adi
Shamir, and Leonard Adleman) and digital certificates to
authenticate the server in a transaction and to protect private
Information as it passes from one part to another over the
Internet.

SSL transactions do not require client authentication as most
servers consider a valid credit-card number to be sufficient for
authenticating a secure purchase.

’

CNT 4714: Java Networking Part 3 Page 26 Mark Llewellyn © @/'

low SSL Works

Initially, a client sends a message to a server.

The server responds and sends its digital certificate to the client for
authentication.

Using public-key cryptography to communicate securely, the client
and server negotiate session keys to continue the transaction.

Once the session keys are established, the communication proceeds
between the client and server using the session keys and digital
certificates.

Encrypted data are passed through TCP/IP (just as regular packets
over the Internet). However, before sending a message with
TCP/IP, the SSL protocol breaks the information into blocks and
compresses and encrypts those blocks.

’

CNT 4714: Java Networking Part 3 Page 27 Mark Llewellyn © @f

How SSL Works (cont)

« Once the data reach the receiver through TCP/IP, the SSL
protocol decrypts the packets, then decompresses and
assembles the data. It is these extra processes that provide an
extra layer of security between TCP/IP and applications.

e SSL 1s used primarily to secure point-to-point connections
using TCP/IP rather than UDP/IP.

« The SSL protocol allows for authentication of the server, the
client, both, or neither. Although typically in Internet SSL
sessions only the server is authenticated.

o
CNT 4714: Java Networking Part 3 Page 28 Mark Llewellyn © g);

12.
13.
14.
15.

Server hello

Certificate optional

Server hello done

Finished

SERVER CLIENT

< 1. Client hello

Certificate request optional >

Server key exchange optional >
< 7. Certificate optional
< 8. Client Key exchange
< 9. Certificate verify optional
< 10. Change to encrypted mode
< 11. Finished

Change to encrypted mode q

»14. Encrypted data

Encrypted data <

Close messages

T15.

Close messages.

CNT 4714: Java Networking Part 3

Page 29

Mark Llewellyn ©

Detalls Of The SSL Protocol

Use the diagram on the previous page to index the
steps.

Client hello. The client sends the server
Information including the highest level of SSL it
supports and a list of the cipher suites it supports
Including cryptographic algorithms and key sizes.

Server hello. The server chooses the highest
version of SSL and the best cipher suite that both
the client and server support and sends this
Information to the client.

”
CNT 4714: Java Networking Part 3 Page 30 Mark Llewellyn © g);

Details Of The SSL Protocol (cont)

Certificate. The server sends the client a certificate
or a certificate chain. Optional but used whenever
server authentication is required.

Certificate Request. If the server needs to
authenticate the client, it sends the client a
certificate request. In most Internet applications
this message is rarely sent.

Server key exchange. The server sends the client a
server key exchange message when the public key
Information sent in (3) above Is not sufficient for
key exchange.

#
CNT 4714: Java Networking Part 3 Page 31 Mark Llewellyn © @j

Details Of The SSL Protocol (cont)

6. Server hello done. The server tells the client that it
IS finished with its initial negotiation messages.

/. Certificate. If the server requests a certificate from
the client in (4), the client sends its certificate chain,
just as the server did in (3).

8. Client key exchange. The client generates
Information used to create a key to use for
symmetric encryption. For RSA, the client then
encrypts this key information with the server’s
public key and sends it to the server.

#
CNT 4714: Java Networking Part 3 Page 32 Mark Llewellyn © @j

10.

11.

Details Of The SSL Protocol (cont)

Certificate verify. This message Is sent when a
client presents a certificate as above. Its purpose Is
to allow the server to complete the process of
authenticating the client. When this message Is
used, the client sends information that it digitally
signs using a cryptographic hash function. When
the server decrypts this information with the client’s
plu_blic key, the server iIs able to authenticate the
client.

Change to encrypted mode. The client sends a
message telling the server to change to encrypted
mode.

Finished. The client tells the server that it is ready
for secure data communication to begin.

”
CNT 4714: Java Networking Part 3 Page 33 Mark Llewellyn © g);

12.

13.

14.

15.

Details Of The SSL Protocol (cont)

Change to encrypted mode. The server sends a
message telling the client to switch to encrypted mode.

Finished. The server tells the client that it is ready for
secure data communication to begin. This marks the
end of the SSL handshake.

Encrypted data. The client and the server communicate
using the symmetric encryption algorithm and the
cryptographic hash function negotiated in (1) and (2),
and using the secret key that the client sent to the server
In (8).

Close messages. At the end of the connection, each
side will send a close_notify message to inform the peer
that the connection is closed.

#
CNT 4714: Java Networking Part 3 Page 34 Mark Llewellyn © @j

Java Secure Socket Extension (JSSE)

SSL encryption has been integrated into Java technology
through the Java Secure Socket Extension (JSSE). JSSE has
been an integral part of Java (not a separately loaded
extension) since version 1.4.

JSSE provides encryption, message integrity checks, and
authentication of the server and client.

JSSE uses keystores to secure storage of key pairs and
certificates used in PKI (Public Key Infrastructure which
Integrates public-key cryptography with digital certificates
and certificate authorities to authenticate parties In a
transaction.)

A truststore Is a keystore that contains keys and certificates
used to validate the identities of servers and clients.

’

CNT 4714: Java Networking Part 3 Page 35 Mark Llewellyn © @/'

Java Secure Socket Extension (JSSE) (cont)

Using secure sockets in Java is very similar to using the non-
secure sockets that we have already seen.

JSSE hides the details of the SSL protocol and encryption
from the programmer entirely.

The final example in this set of notes involves a client
application that attempts to logon to a server using SSL.

NOTE: Before attempting to execute this application, look at
the code first and then go to page 46 for execution details.
This application will not execute correctly unless you follow
the steps beginning on page 46.

’

CNT 4714: Java Networking Part 3 Page 36 Mark Llewellyn © @/'

I/l LoginServer.java
/I LoginServer uses an SSLServerSocket to demonstrate JSSE's SSL implementation.
package securitystuff.jsse;

I/l Java core packages LoginServer.java

; SR
Import java.lo.*; SSL Server Implementation

/[Java extension packages
import javax.net.ssl.*;

public class LoginServer {
private static final String CORRECT_USER_NAME = "Mark";
private static final String CORRECT _PASSWORD ="CNT 4714";
private SSLServerSocket serverSocket;

/I LoginServer constructor
public LoginServer() throws Exception

{
Il SSLServerSocketFactory for building SSLServerSockets

SSLServerSocketFactory socketFactory = Use default
(SSLServerSocketFactory) / SSLServerSocketFactory to
SSLServerSocketFactory.getDefault(); create SSL sockets
Il create SSLServerSocket on specified port

serverSocket = (SSLServerSocket)
socketFactory.createServerSocket(7070); SSL socket will listen on port 7070

} // end LoginServer constructor

#
CNT 4714: Java Networking Part 3 Page 37 Mark Llewellyn © @j

/] start server and listen for clients
private void runServer()

{
Il perpetually listen for clients _ _
while (true) { Accept new client connection.
// wait for client connection and check login information This is a blocking call that
try { returns an SSLSocket when a
System.err.printin("Waiting for connection..."); client connects.

/I create new SSLSocket for client

SSLSocket socket = (SSLSocket) serverSocket.accept();
/I open BufferedReader for reading data from client

BufferedReader input = new BufferedReader(™
new InputStreamReader(socket.getlnputStream()));
I/l open PrintWriter for writing data to client — >

PrintWriter output = new PrintWriter(Get input and output
new OutputStreamWriter(socket.getOutputStream()))_/ streams just as with

String userName = input.readLine(); normal sockets.

String password = input.readLine();

if (userName.equals(CORRECT_USER_NAME) &&

password.equals(CORRECT_PASSWORD)) {
output.printin("Welcome, " + userName); N\

} Validate user name and

else { password against constants
output.printin("Login Failed."); on the server.

}

#
CNT 4714: Java Networking Part 3 Page 38 Mark Llewellyn © @j

/Il clean up streams and SSLSocket
output.close();
input.close();
socket.close();

P
<

Close down 1I/O streams and the socket

} /Il end try
/l handle exception communicating with client

catch (IOException ioException) {
ioException.printStackTrace();

}

} // end while

} /I end method runServer

Il execute application
public static void main(String args[]) throws Exception
{
LoginServer server = new LoginServer();
server.runServer();

}

} /llend LoginServer class

CNT 4714: Java Networking Part 3 Page 39 Mark Llewellyn ©

/Il LoginClient.java

/I LoginClient uses an SSLSocket to transmit fake login information to LoginServer.

package securitystuff.jsse;
/[Java core packages

import java.io.*;
/[Java extension packages

import javax.swing.*;

LoginClient.java

Client Class for SSL Implementation

import javax.net.ssl.*;

public class LoginClient {
// LoginClient constructor
public LoginClient()
{

// open SSLSocket connection to server and send login

try {
/l obtain SSLSocketFactory for creating SSLSockets

Use default SSLSocketFactory
to create SSL sockets

SSLSocketFactory socketFactory = (SSLSocketFactory) SSLSocketFactory.getDefault();

Il create SSLSocket from factory

SSLSocket socket = (SSLSocket) socketFactory.createSocket("localhost", 7070);

/I create PrintWriter for sending login to server ™\
PrintWriter output = new PrintWriter(

new OutputStreamWriter(socket.getOutputStream()));
// prompt user for user name

SSL socket will listen on port 7070

String userName = JOptionPane.showlnputDialog(null, "Enter User Name:");

/I send user name to server
output.printin(userName);

CNT 4714: Java Networking Part 3 Page 40

Mark Llewellyn ©

/I prompt user for password
String password = JOptionPane.showlnputDialog(null, "Enter Password:");
I/l send password to server
output.printin(password);
output.flush();
Il create BufferedReader for reading server response
BufferedReader input = new BufferedReader(
new InputStreamReader(socket.getlnputStream ()));
// read response from server
String response = input.readLine();
/Il display response to user
JOptionPane.showMessageDialog(null, response);
/Il clean up streams and SSLSocket
output.close();
input.close();
socket.close();
}// end try
// handle exception communicating with server
catch (IOException ioException) {

IoException.printStackTrace();
} Il execute application
I exit application public static void main(String
finally { args[])
System.exit(0); {
} new LoginClient();
} // end LoginClient constructor

CNT 4714: Java Networking Part 3 Mark Llewellyn ©

Creating Keystore and Certificate

« Before you can execute the LoginServer and LoginClient
application using SSL you will need to create a keystore and
certificate for the SSL to operate correctly.

« Utilizing the keytool (a key and certificate management tool)
In Java generate a keystore and a certificate for this server
application. See the next slide for an example.

« We’ll use the same keystore for both the server and the client
although in reality these are often different. The client’s
truststore, in real-world applications, would contain trusted
certificates, such as those from certificate authorities (e.qg.
VeriSign (www.verisign.com), etc.).

(o

CNT 4714: Java Networking Part 3 Page 42 Mark Llewellyn © g’);

http://www.verisign.com/
http://www.verisign.com/
http://www.verisign.com/
http://www.verisign.com/
http://www.verisign.com/

Creating Keystore and Certificate

Administrator: Command Prompt

C:sProgram FilessJavasjdkl.6.B_18~hin*keytool —genkey —keystore S55LStore —-alias
SSLCertificate

Enter keystore password:

Keystore password is too short — must he at least 6 characters

Enter keystore password:

Re—enter new password:

llhat is your first and last name?
[Unknoun1: Magk Llewellgn Note requirements for password.

llhat iz the name of your organizational unit?
[Unknownl: UGF G5 Dept

llhat is the name of your organization?
[Unknownl:

llhat iz the name of your City or Locality?
[Unknownl: Orlando

llhat is the name of your State or Province?
[Unknownl: Florida

llhat iz the two—letter country code for this wnit?
[Unknownl:z: US

gs CH=Mark Llewellyn,. OU=UCF C8 Dept, 0=UCF. L=0rlando. ST=Florida. C=US% correct

[nol: vyes
Enter key password for <SS5LCertificate’
CRETURN if same as keystore password):
Re—enter new password:

C:“Program Files“Javasjdkli.6.B8_18~hin>

CNT 4714: Java Networking Part 3 Page 43 Mark Llewellyn ©

Creating Keystore and Certificate

Viewing the keystore contents
¢+ Command Prompt (2) after its creation.

C:“Program Files“Java*jdkl.5.8%bhin>*keytool —-list —v —-keystore S55LEStore
Enter keystore password: master

Keystore type: jks

K t id : SUH : i
eystore provider Notice the entry type is keyEntry

Your keystore contains 1 entry which means that this entry has a

filias name: sslcertificate private key associated with it.
Creation date: Sep 28, 2885
Entry type: keyEntry
Certificate chain length: 1
Certificatell]:
Ouner: CHN=Mark Llewelluyn, OU=School of Computer Science, O0=UCF,., L=0rlando,. S5T=F1
orida, C=US
Issuer: CH=Mark Llewellyn. OU=S5chool of Computer Science, O0=UCF., L=0rlando. ST=F
lorida. C=US
Serial number: 4330%Yedf
Uaéigaggum: Tue Sep 28 16:-25:35 GMT-A5:880 26085 until: Mon Dec 192 16:25:35 GHMT-85%
Certificate fingerprints:
MDG: 93:D5:5A:7A:7A:98:82:AC:BR:CB:95:5B:1D:BD:F5:9D
SHAL1: YA-6F 6L 6P :AAE?-F2:CCz24:97:Co-ED:-AD:z2F:?C:-53:5A:E6:=73:26

CNT 4714: Java Networking Part 3 Page 44 Mark Llewellyn ©

Creating Keystore and Certificate

s

B Administrator: Command Prompt

C:“»Program FilessJavasjdkl.6.B8_18~bin>*kevytool —export —»fc —alias sslcertificate
—keystore SS5LStore —file mycert.cepr

Enter keystore password:
Certificate stored in file <mycert.cerr>

C:“Program FilessJava“jdkl.6.@_18“bhin>_ Export the certificate into a

certificate file.

-

L | B | |

B Administrator: Command Prompt

Certificate stored in file <mycert.ceprr Contents of the certificate

C:~Program Files“Javasjdkl.6.@_18“bin>*type mycert.cer

————— BEGIN CERTIFICATE—————

MIIDFjCCAtSgAwIBAgI ESYtCHjALBgc ghk jOoOAQDEQAwh JELMAKGALIUEBKRMCUUMxEDAOBgNUBAG T
BAZsh3JpEGExEDAOBgHNUBAc TBA? yhGFuZGE xDDAKBgHUBAcTALUDRJFEUMBI GA1UECxMLUUNGI ENT
IERl1cHOQxFzAUBgNUBAMT Dkl hecmsgT Gx1d2UshH IuMB4EDTASMDI wHTESHDcwM 1o DTASMDUwWwH JES
MDcuwMlowbh jELHAKGALUEBWMCUUMxEDAOBgHUBAgT BAZ: b3 JpZGExEDAOBgHUBAcTBA? yhGFuZGE x
DDAKBgHNUBAoTALUDRFEUMBI GALUECxMLUUNGI ENTIER1cHQxF=AUBgHUBAMT DKl hemsgTGx1d2Us
hH 1uMI I BuDCCASwGBygGEM44BAEwggEf Ao GBAF1 AU4EAddRI pUt 2KnCP=s50Ff 2EhdAdSPO? EAMMe P4C2
USZpRULATI IHPUT ZHWP g »xFUW6MPhLmlUs14EYgBABL. JnY LdrmUC1pJ +F 6 ARTVECLCT Pupl 6 3xhud
Ol fnxgimPFQEE+4P2EA80eww I 1VBHaFpEv?ni=zrithl vroBil DGEIRSAHHAKWUAL12BQ jxU jC8 yukrmC

ouuECA/BYHPUCgYEA? +GghdabPdYLueHtcHrhdudmUrub OQugC+UdMCzBHgnd RV e Out RET +ZxBxCH
gLREJFnEjo EvoFhl3zwuky jMimdTwileotUf I Bo4KOuH iuz pnWRbgMACAo hMULx +2J6ASQY=KT xughR
kImog?-hWuWf BpKLZ16Ae1lU1ZAFMO-YPSSoDgY¥UAAoGEBAPv bmegt g4I ME46AA3P1Z2WpesJaKUk
CHBFNmsnObgMNik¥ 1 jHGxL+2KPJ julluZublxUY? I s Txmf GL?2kdUa8 +LEfmDuA3iPS=01ihd 1u2FEfF
Z2REEZquwEhTBAtZ3I0ad6c@829 +HEhes LwFiOUUbas kDHs hMPALx2kobhbhGT LUM+Do FF4MAs GBygGES M4
BHHFHEnﬂﬁggﬁg¥3?55¥gw59EaHIyEHEHanJBa1UUwIUEUUthg?GUUDuHHEHJHFBUEFDUE=

C=~Program Files“Javasjdkl.6.@_180~bin> =

CNT 4714: Java Networking Part 3 Page 45 Mark Llewellyn © N /!

Creating Keystore and Certificate

.- - Import the certificate into a
Administrator: Command Prompt new truststore.

C:\Program Files\Javasjdkl.6.B_1B\bin>keytool -import -alias sslcertificate -fil
¢ mycert.cer —keystore truststore
Enter keystore password:
Re-enter new password:
Owner: CN=Mark Llewellyn, OU=UCF CS Dept, 0=UCF. L=0rlando, 5T=Florida, C=US
Issuer: CN=Mark Llewellyn, OQU=UCF CS Dept. 0=UCF, L=0Orlando, 5T=Florida, C=US
Serial number: 498h4236
Ualid from: Thu Feh @5 14:47:82 EST 2889 until: Yed May B6 15:47:82 EDT 2689
Certificate fingerprints:
MD5: BB:AA:23:4B:89:54:D2:52:F@:C3:31:6E:-9E:C1:15:7C
SHAL: 66:15:A5:51:D6:66:54:B5:2F:YE:68:BD:05:A3:E3:71:8F:FC:6E:7Y
Signature algorithm name: SHALlwithDSA
Uersion: 3
Trust this certificate? [nol: yes
Certificate was added to keystore

C:isProgram FilessJavasjdkl.6.8_18\hin3_

CNT 4714: Java Networking Part 3 Page 46 Mark Llewellyn ©

Creating Keystore and Certificate

Administrator: Command Prompt WiEh e GoliEis @i
truststore.

C:sProgram FilessdJavasjdkl.6.@_18~bin*keytool —-list —v —keystore truststore
Enter keystore password:

Keystore type: JKS

Keystore provider: SUN Note that the entry type is trustedCertEntry, which

Your keystore contains 1 entry means that a private key is not available for this entry. It
. i p also means that this file is not suitable as a
Aliasz name: sslcertificate

Creation date: Feh 5, 2089 KeyManager's keystore.
Entry type: trustedCertEntry

Ovner: CH=Mark Llewellyn, OU=UCF C§% Dept., 0=UCF, L=0rlando, 5T=Florida, C=US
Issuer: CH=Mark Llewellyn, OU=UCF GCS§ Dept. O0=UCF, L=0rlando. 8T=Florida, C=US
Serial numbher: 498bh4236
Ualid from: Thu Feb 85 14:47:82 EST 28879 until: Wed May 86 15:47:82 EDT 2889
Certificate fingerprints:

MD5: 80:AA:23:4B:87:54:D2:52:FA:C3:31:6E:?E:C1:15:7C

SHA1: 66:15:A5:51:D6:66:54:-B5:-2F:-YE:68:BD:B5%:A3:E3:71:8F:FC:6E:="7"

Signature algorithm name: SHA1withDSA

Uersion: 3

C:sProgram FilessdJavasjdkl.6.B_18%bhin>_

e ——
CNT 4714: Java Networking Part 3 Page 47 Mark Llewellyn ©

Launching the Secure Server

« Now you are ready to start the server executing from a
command prompt...

» Once started, the server simply waits for a connection from a
client. The example below illustrates the server after waiting
for several minutes.

B Administrator: Command Prompt - java -Djavax.net.ssl.keyStore=55L5tore -Djavax.net.sslkeyStoreP. |E‘@i_h‘

C:\Program Files\J aua}c,j dki.6.8_18/hin

C:\Program Files\Javasjdkl.6.8_1B5bin2java -Djavax.net.ssl.keyStore=58LStore -Dj
avax.net.ssl.keyStorePassvord=naster securitystuff.jsse.loginServer

Waiting for connection...

Waiting for connection...

Start the SSL Server executing with this
command where you replace this password
with the password you used when you set-
F up the keystore.

CNT 4714: Java Networking Part 3 Page 48 Mark Llewellyn © S;/

Launching the SSL Client

Start a client application executing from a new command
window...

Once the client establishes communication with the server, the

authentication process begins.

Start the SSL Client application executing with this
command where you replace this password with the
password you used when you set-up the keystore.
Since we are using the same keystore for the
server and the client...these will be the same.

d F'rcrmEt - java -Djavax.ngt.ssltrustStore=S5L5tore -Djavax.net.ssl.trustStor.. o=

=

B Administrator: Comman
e =

G:\Program FilessJavarcd jdki.6.B_10,hin

G:wProgram FilessJavasjdkl.6.B8_1B\hinjava -Djavax.net.ssl.trustitore=58L5tore -
Djavax.net.ssl.trustStorePassword=master securitystuff.jsse.loginClient

CNT 4714: Java Networking Part 3 Page 49 Mark Llewellyn © S;/

Enter User Name:
|Mark{

Cancel

Enter Password:
|CNT 4714

OK Cancel

@ Welcome, Mark

OK

User enters username
and password which
are sent to the server.

Authentication successful —
user is logged on.

CNT 4714: Java Networking Part 3

Mark Llewellyn ©

Enter User Name:
IMark

User enters username and
password which are sent to the
server. In this case the user enters
an incorrect password.

Enter Password:

|Ifnrgnt

OK

Authentication not successful —
user is not logged on.

@ Login Failed.

OK

CNT 4714: Java Networking Part 3 Page 51 Mark Llewellyn ©

