
CNT 4714: Java Networking Part 3 Page 1 Mark Llewellyn ©

CNT 4714: Enterprise Computing

Fall 2010

Java Networking and the Internet – Part 3

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cnt4714/fall2010

CNT 4714: Java Networking Part 3 Page 2 Mark Llewellyn ©

More Details on Establishing a

Server Using Stream Sockets

• Step 1 is to create a ServerSocket object.

• Invoking a ServerSocket constructor such as,

ServerSocket server =

new ServerSocket (portNumber, queueLength);

registers an available TCP port number and specifies

the number of clients that can wait to connect to the

server (i.e., the queue length).

CNT 4714: Java Networking Part 3 Page 3 Mark Llewellyn ©

More Details on Establishing a

Server Using Stream Sockets (cont.)

• The port number is used by the clients to locate the server

application on the server computer. This is often called the

handshake point.

• If the queue is full, the server refuses client connections.

• The constructor establishes the port where the server waits

for connections from clients – a process known as binding

the server to the port.

• Each client will ask to connect to the server on this port.

Only one application at a time can be bound to a specific port

on the server.

CNT 4714: Java Networking Part 3 Page 4 Mark Llewellyn ©

More Details on Establishing a

Server Using Stream Sockets (cont.)

• Port numbers can be between 0 and 65,535. Most

OS reserve port numbers below 1024 for system

services such as email, and Internet servers.

Generally, these ports should not be specified as

connection ports in user programs. In fact, some OS

require special access privileges to bind to port

numbers below 1024.

• Programs manage each client connection with a

Socket object.

CNT 4714: Java Networking Part 3 Page 5 Mark Llewellyn ©

More Details on Establishing a

Server Using Stream Sockets (cont.)

• In Step 2, the server listens indefinitely (is said to block) for
an attempt by a client to connect. To listen for a client
connection, the program calls ServerSocket method
accept, as in,

Socket connection = server.accept();

which returns a Socket when a connection with a client is
established.

• The Socket allows the server to interact with the client.

• The interactions with the client actually occur at a different
server port from the handshake port. This allows the port
specified in Step 1 to be used again in a multi-threaded
server to accept another client connection. We’ll see an
example of this later in this set of notes.

CNT 4714: Java Networking Part 3 Page 6 Mark Llewellyn ©

More Details on Establishing a

Server Using Stream Sockets (cont.)

• In Step 3, the OutputStream and InputStream objects

that enable the server to communicate with the client by

sending and receiving bytes are established.

• The server sends information to the client via an

OutputStream and received information from the client

via an InputStream.

• The server invokes the method getOutputStream on the

Socket to get a reference to the Socket’s OutputStream

and invokes method getInputStream on the Socket to

get a reference to the Socket’s InputStream.

CNT 4714: Java Networking Part 3 Page 7 Mark Llewellyn ©

More Details on Establishing a

Server Using Stream Sockets (cont.)

• If primitive types or serializable types (like String)

need to be sent rather than bytes, wrapper classes are

used to wrap other stream types around the

OutputStream and InputStream objects

associated with the Socket.

ObjectInputStream input =

new(ObjectInputStream(connection.getInputStream());

ObjectOutputStream output =

new(ObjectOutputStream(connection.getOutputStream());

CNT 4714: Java Networking Part 3 Page 8 Mark Llewellyn ©

More Details on Establishing a

Server Using Stream Sockets (cont.)

• The beauty of establishing these relationships is that

whatever the server writes to the

ObjectOutputStream is set via the

OutputStream and is available at the client’s

InputStream, and whatever the client writes to its

OutputStream (with a corresponding

ObjectOutputStream) is available via the

server’s InputStream.

• The transmission of the data over the network is

seamless and is handled completely by Java.

CNT 4714: Java Networking Part 3 Page 9 Mark Llewellyn ©

More Details on Establishing a

Server Using Stream Sockets (cont.)

• With Java’s multithreading, you can create multithreaded

servers that can manage many simultaneous connections with

many clients.

• A multithreaded server can take the Socket returned by each

call to accept and create a new thread that manages network

I/O across that Socket.

– Alternatively, a multithreaded sever can maintain a pool of threads (a

set of already existing threads) ready to manage network I/O across the
new Sockets as they are created. In this fashion, when the server

receives a connection, it need not incur the overhead of thread creation.

When the connection is closed, the thread is returned to the pool for

reuse.

CNT 4714: Java Networking Part 3 Page 10 Mark Llewellyn ©

More Details on Establishing a

Server Using Stream Sockets (cont.)

• Step 4 is the processing phase, in which the server

and client communicate via the OutputStream

and InputStream objects.

• In Step 5, when the transmission is complete, the

server closes the connection by invoking the close

method on the streams and on the Socket.

CNT 4714: Java Networking Part 3 Page 11 Mark Llewellyn ©

More Details on Establishing a Client

Using Stream Sockets

• Step 1 is to create a Socket object to connect to

the server. The Socket constructor established the

connection with the server.

• For example, the statement

Socket connection = new Socket(serverAddress, port);

uses the Socket constructor with two arguments –

the server’s address and the port number.

• If the connection attempt is successful, this

statement returns a Socket.

CNT 4714: Java Networking Part 3 Page 12 Mark Llewellyn ©

More Details on Establishing a Client

Using Stream Sockets (cont.)

• If the connection attempt fails, an instance of a

subclass of IOException, since so many program

simply catch IOException.

• An UnknownHostException occurs specifically

when the system is unable to resolve the server

address specified in the call to the Socket

constructor to a corresponding IP address.

CNT 4714: Java Networking Part 3 Page 13 Mark Llewellyn ©

More Details on Establishing a Client

Using Stream Sockets (cont.)

• In Step 2, the client uses Socket methods

getInputStream and getOutputStream to

obtain references to the Socket’s InputStream

and OutputStream.

• If the server is sending information in the form of

actual types (not byte streams) the client should

receive the information in the same format. Thus, if

the server sends values with an

ObjectOutputStream, the client should read

those values with an ObjectInputStream.

CNT 4714: Java Networking Part 3 Page 14 Mark Llewellyn ©

More Details on Establishing a Client

Using Stream Sockets (cont.)

• Step 3 is the same as in the server, where the client and the server
communicate via InputStream and OutputStream objects.

• In Step 4, the client closes the connection when the transmission is
complete by invoking the close method on the streams and on the
Socket.

• The client must determine when the server is finished sending
information so that it can call close to close the Socket
connection.

• For example, the InputStream method read returns the value -1
when it detects end-of-stream (also called EOF). If an
ObjectInputStream is used to read information from the
server, an EOFException occurs when the client attempts to
read a value from a stream on which end-of-stream is detected.

CNT 4714: Java Networking Part 3 Page 15 Mark Llewellyn ©

CNT 4714: Java Networking Part 3 Page 16 Mark Llewellyn ©

CNT 4714: Java Networking Part 3 Page 17 Mark Llewellyn ©

CNT 4714: Java Networking Part 3 Page 18 Mark Llewellyn ©

Using Java’s High-level Networking

Capabilities
• As we saw earlier, the TCP and UDP protocols are at the

transport layer within the Internet Reference Model. As far as

Java is concerned, these provide “low-level” networking

capability.

• Java also provides application layer networking protocol

capabilities to allow for communication between applications.

• In the examples we have seen so far, it was the developer’s

responsibility to establish a connection between the client and

the server (in the case of the UDP protocol, its more a process

of establishing the sockets since there is no connection

between the client and the server in this protocol).

CNT 4714: Java Networking Part 3 Page 19 Mark Llewellyn ©

Using Java’s High-level Networking

Capabilities (cont.)

• The next example illustrate Java’s application layer
capabilities which remove the responsibility of
establishing the network connection from the
developer.

• The example relies on a Web browser to establish the
communication link to a Web server. (This one uses
an applet to open a specific URL. Using a URL as an
argument to the showDocument method of
interface AppletContext, causes the browser in
which the applet is executing to display that
resource.)

CNT 4714: Java Networking Part 3 Page 20 Mark Llewellyn ©

Example 1 – SiteSelector Applet

<html>

<title>Site Selector</title>

<body>

<applet code = "SiteSelector.class" width = "300" height = "75">

<param name = "title0" value = "Java Home Page">

<param name = "location0" value = "http://www.java.sun.com/">

<param name = "title1" value = "CNT 47174 Home Page">

<param name = "location1" value = "http://www.cs.ucf.edu/courses/cnt4714/fall2010">

<param name = "title2" value = "World Cycling News">

<param name = "location2" value = "http://www.cyclingnews.com/">

<param name = "title3" value = "Formula 1 News">

<param name = "location3" value = "http://www.formula1.com/">

</applet>

</body>

</html>

HTML document to load the SiteSelctor Applet

CNT 4714: Java Networking Part 3 Page 21 Mark Llewellyn ©

Example 1 – SiteSelector Applet (cont.)

// SiteSelector.java

// This program loads a document from a URL.

import java.net.MalformedURLException;

import java.net.URL;

import java.util.HashMap;

import java.util.ArrayList;

import java.awt.BorderLayout;

import java.applet.AppletContext;

import javax.swing.JApplet;

import javax.swing.JLabel;

import javax.swing.JList;

import javax.swing.JScrollPane;

import javax.swing.event.ListSelectionEvent;

import javax.swing.event.ListSelectionListener;

public class SiteSelector extends JApplet

{

private HashMap< Object, URL > sites; // site names and URLs

private ArrayList< String > siteNames; // site names

private JList siteChooser; // list of sites to choose from

// read HTML parameters and set up GUI

CNT 4714: Java Networking Part 3 Page 22 Mark Llewellyn ©

Example 1 – SiteSelector Applet (cont.)

public void init()

{

sites = new HashMap< Object, URL >(); // create HashMap

siteNames = new ArrayList< String >(); // create ArrayList

// obtain parameters from HTML document

getSitesFromHTMLParameters();

// create GUI components and layout interface

add(new JLabel("Choose a site to browse"), BorderLayout.NORTH);

siteChooser = new JList(siteNames.toArray()); // populate JList

siteChooser.addListSelectionListener(

new ListSelectionListener() // anonymous inner class

{ // go to site user selected

public void valueChanged(ListSelectionEvent event)

{

// get selected site name

Object object = siteChooser.getSelectedValue();

// use site name to locate corresponding URL

URL newDocument = sites.get(object);

// get applet container

AppletContext browser = getAppletContext();

// tell applet container to change pages

browser.showDocument(newDocument);

} // end method valueChanged

} // end anonymous inner class

}; // end call to addListSelectionListener

CNT 4714: Java Networking Part 3 Page 23 Mark Llewellyn ©

Example 1 – SiteSelector Applet (cont.)

add(new JScrollPane(siteChooser), BorderLayout.CENTER);

} // end method init

// obtain parameters from HTML document

private void getSitesFromHTMLParameters()

{

String title; // site title

String location; // location of site

URL url; // URL of location

int counter = 0; // count number of sites

title = getParameter("title" + counter); // get first site title

// loop until no more parameters in HTML document

while (title != null)

{

// obtain site location

location = getParameter("location" + counter);

try // place title/URL in HashMap and title in ArrayList

{

url = new URL(location); // convert location to URL

sites.put(title, url); // put title/URL in HashMap

siteNames.add(title); // put title in ArrayList

} // end try

catch (MalformedURLException urlException)

{

urlException.printStackTrace();

} // end catch

counter++;

title = getParameter("title" + counter

); // get next site title

} // end while

} // end method

getSitesFromHTMLParameters

} // end class SiteSelector

CNT 4714: Java Networking Part 3 Page 24 Mark Llewellyn ©

Original SiteSelector Applet before

user selected World Cycling News as

the resource to be opened. Once

selected this brought up the webpage

shown behind the applet invocation.

CNT 4714: Java Networking Part 3 Page 25 Mark Llewellyn ©

Original SiteSelector Applet before

user selected World Cycling News as

the resource to be opened. Once

selected this brought up the webpage

shown behind the applet invocation.

CNT 4714: Java Networking Part 3 Page 26 Mark Llewellyn ©

Secure Sockets Layer (SSL)

• Most e-business uses SSL for secure on-line transactions.

• SSL does not explicitly secure transactions, but rather secures

connections.

• SSL implements public-key technology using the RSA

algorithm (developed in 1977 at MIT by Ron Rivest, Adi

Shamir, and Leonard Adleman) and digital certificates to

authenticate the server in a transaction and to protect private

information as it passes from one part to another over the

Internet.

• SSL transactions do not require client authentication as most

servers consider a valid credit-card number to be sufficient for

authenticating a secure purchase.

CNT 4714: Java Networking Part 3 Page 27 Mark Llewellyn ©

How SSL Works

• Initially, a client sends a message to a server.

• The server responds and sends its digital certificate to the client for

authentication.

• Using public-key cryptography to communicate securely, the client

and server negotiate session keys to continue the transaction.

• Once the session keys are established, the communication proceeds

between the client and server using the session keys and digital

certificates.

• Encrypted data are passed through TCP/IP (just as regular packets

over the Internet). However, before sending a message with

TCP/IP, the SSL protocol breaks the information into blocks and

compresses and encrypts those blocks.

CNT 4714: Java Networking Part 3 Page 28 Mark Llewellyn ©

How SSL Works (cont.)

• Once the data reach the receiver through TCP/IP, the SSL

protocol decrypts the packets, then decompresses and

assembles the data. It is these extra processes that provide an

extra layer of security between TCP/IP and applications.

• SSL is used primarily to secure point-to-point connections

using TCP/IP rather than UDP/IP.

• The SSL protocol allows for authentication of the server, the

client, both, or neither. Although typically in Internet SSL

sessions only the server is authenticated.

CNT 4714: Java Networking Part 3 Page 29 Mark Llewellyn ©

2. Server hello

3. Certificate optional

4. Certificate request optional

5. Server key exchange optional

6. Server hello done

12. Change to encrypted mode

13. Finished

14. Encrypted data

15. Close messages

SERVER

1. Client hello

7. Certificate optional

8. Client Key exchange

9. Certificate verify optional

10. Change to encrypted mode

11. Finished

14. Encrypted data

15. Close messages.

CLIENT

CNT 4714: Java Networking Part 3 Page 30 Mark Llewellyn ©

Details Of The SSL Protocol

• Use the diagram on the previous page to index the

steps.

1. Client hello. The client sends the server

information including the highest level of SSL it

supports and a list of the cipher suites it supports

including cryptographic algorithms and key sizes.

2. Server hello. The server chooses the highest

version of SSL and the best cipher suite that both

the client and server support and sends this

information to the client.

CNT 4714: Java Networking Part 3 Page 31 Mark Llewellyn ©

Details Of The SSL Protocol (cont.)

3. Certificate. The server sends the client a certificate

or a certificate chain. Optional but used whenever

server authentication is required.

4. Certificate Request. If the server needs to

authenticate the client, it sends the client a

certificate request. In most Internet applications

this message is rarely sent.

5. Server key exchange. The server sends the client a

server key exchange message when the public key

information sent in (3) above is not sufficient for

key exchange.

CNT 4714: Java Networking Part 3 Page 32 Mark Llewellyn ©

Details Of The SSL Protocol (cont.)

6. Server hello done. The server tells the client that it

is finished with its initial negotiation messages.

7. Certificate. If the server requests a certificate from

the client in (4), the client sends its certificate chain,

just as the server did in (3).

8. Client key exchange. The client generates

information used to create a key to use for

symmetric encryption. For RSA, the client then

encrypts this key information with the server’s

public key and sends it to the server.

CNT 4714: Java Networking Part 3 Page 33 Mark Llewellyn ©

Details Of The SSL Protocol (cont.)

9. Certificate verify. This message is sent when a
client presents a certificate as above. Its purpose is
to allow the server to complete the process of
authenticating the client. When this message is
used, the client sends information that it digitally
signs using a cryptographic hash function. When
the server decrypts this information with the client’s
public key, the server is able to authenticate the
client.

10. Change to encrypted mode. The client sends a
message telling the server to change to encrypted
mode.

11. Finished. The client tells the server that it is ready
for secure data communication to begin.

CNT 4714: Java Networking Part 3 Page 34 Mark Llewellyn ©

Details Of The SSL Protocol (cont.)

12. Change to encrypted mode. The server sends a
message telling the client to switch to encrypted mode.

13. Finished. The server tells the client that it is ready for
secure data communication to begin. This marks the
end of the SSL handshake.

14. Encrypted data. The client and the server communicate
using the symmetric encryption algorithm and the
cryptographic hash function negotiated in (1) and (2),
and using the secret key that the client sent to the server
in (8).

15. Close messages. At the end of the connection, each
side will send a close_notify message to inform the peer
that the connection is closed.

CNT 4714: Java Networking Part 3 Page 35 Mark Llewellyn ©

Java Secure Socket Extension (JSSE)

• SSL encryption has been integrated into Java technology
through the Java Secure Socket Extension (JSSE). JSSE has
been an integral part of Java (not a separately loaded
extension) since version 1.4.

• JSSE provides encryption, message integrity checks, and
authentication of the server and client.

• JSSE uses keystores to secure storage of key pairs and
certificates used in PKI (Public Key Infrastructure which
integrates public-key cryptography with digital certificates
and certificate authorities to authenticate parties in a
transaction.)

• A truststore is a keystore that contains keys and certificates
used to validate the identities of servers and clients.

CNT 4714: Java Networking Part 3 Page 36 Mark Llewellyn ©

Java Secure Socket Extension (JSSE) (cont.)

• Using secure sockets in Java is very similar to using the non-

secure sockets that we have already seen.

• JSSE hides the details of the SSL protocol and encryption

from the programmer entirely.

• The final example in this set of notes involves a client

application that attempts to logon to a server using SSL.

• NOTE: Before attempting to execute this application, look at

the code first and then go to page 46 for execution details.

This application will not execute correctly unless you follow

the steps beginning on page 46.

CNT 4714: Java Networking Part 3 Page 37 Mark Llewellyn ©

// LoginServer.java

// LoginServer uses an SSLServerSocket to demonstrate JSSE's SSL implementation.

package securitystuff.jsse;

// Java core packages

import java.io.*;

// Java extension packages

import javax.net.ssl.*;

public class LoginServer {

private static final String CORRECT_USER_NAME = "Mark";

private static final String CORRECT_PASSWORD = "CNT 4714";

private SSLServerSocket serverSocket;

// LoginServer constructor

public LoginServer() throws Exception

{

// SSLServerSocketFactory for building SSLServerSockets

SSLServerSocketFactory socketFactory =

(SSLServerSocketFactory)

SSLServerSocketFactory.getDefault();

// create SSLServerSocket on specified port

serverSocket = (SSLServerSocket)

socketFactory.createServerSocket(7070);

} // end LoginServer constructor

LoginServer.java

SSL Server Implementation

SSL socket will listen on port 7070

Use default

SSLServerSocketFactory to

create SSL sockets

CNT 4714: Java Networking Part 3 Page 38 Mark Llewellyn ©

// start server and listen for clients

private void runServer()

{

// perpetually listen for clients

while (true) {

// wait for client connection and check login information

try {

System.err.println("Waiting for connection...");

// create new SSLSocket for client

SSLSocket socket = (SSLSocket) serverSocket.accept();

// open BufferedReader for reading data from client

BufferedReader input = new BufferedReader(

new InputStreamReader(socket.getInputStream()));

// open PrintWriter for writing data to client

PrintWriter output = new PrintWriter(

new OutputStreamWriter(socket.getOutputStream()));

String userName = input.readLine();

String password = input.readLine();

if (userName.equals(CORRECT_USER_NAME) &&

password.equals(CORRECT_PASSWORD)) {

output.println("Welcome, " + userName);

}

else {

output.println("Login Failed.");

}

Accept new client connection.

This is a blocking call that

returns an SSLSocket when a

client connects.

Get input and output

streams just as with

normal sockets.

Validate user name and

password against constants

on the server.

CNT 4714: Java Networking Part 3 Page 39 Mark Llewellyn ©

// clean up streams and SSLSocket

output.close();

input.close();

socket.close();

} // end try

// handle exception communicating with client

catch (IOException ioException) {

ioException.printStackTrace();

}

} // end while

} // end method runServer

// execute application

public static void main(String args[]) throws Exception

{

LoginServer server = new LoginServer();

server.runServer();

}

} //end LoginServer class

Close down I/O streams and the socket

CNT 4714: Java Networking Part 3 Page 40 Mark Llewellyn ©

// LoginClient.java

// LoginClient uses an SSLSocket to transmit fake login information to LoginServer.

package securitystuff.jsse;

// Java core packages

import java.io.*;

// Java extension packages

import javax.swing.*;

import javax.net.ssl.*;

public class LoginClient {

// LoginClient constructor

public LoginClient()

{

// open SSLSocket connection to server and send login

try {

// obtain SSLSocketFactory for creating SSLSockets

SSLSocketFactory socketFactory = (SSLSocketFactory) SSLSocketFactory.getDefault();

// create SSLSocket from factory

SSLSocket socket = (SSLSocket) socketFactory.createSocket("localhost", 7070);

// create PrintWriter for sending login to server

PrintWriter output = new PrintWriter(

new OutputStreamWriter(socket.getOutputStream()));

// prompt user for user name

String userName = JOptionPane.showInputDialog(null, "Enter User Name:");

// send user name to server

output.println(userName);

LoginClient.java

Client Class for SSL Implementation

SSL socket will listen on port 7070

Use default SSLSocketFactory

to create SSL sockets

CNT 4714: Java Networking Part 3 Page 41 Mark Llewellyn ©

// prompt user for password

String password = JOptionPane.showInputDialog(null, "Enter Password:");

// send password to server

output.println(password);

output.flush();

// create BufferedReader for reading server response

BufferedReader input = new BufferedReader(

new InputStreamReader(socket.getInputStream ()));

// read response from server

String response = input.readLine();

// display response to user

JOptionPane.showMessageDialog(null, response);

// clean up streams and SSLSocket

output.close();

input.close();

socket.close();

} // end try

// handle exception communicating with server

catch (IOException ioException) {

ioException.printStackTrace();

}

// exit application

finally {

System.exit(0);

}

} // end LoginClient constructor

// execute application

public static void main(String

args[])

{

new LoginClient();

}

}

CNT 4714: Java Networking Part 3 Page 42 Mark Llewellyn ©

Creating Keystore and Certificate

• Before you can execute the LoginServer and LoginClient

application using SSL you will need to create a keystore and

certificate for the SSL to operate correctly.

• Utilizing the keytool (a key and certificate management tool)

in Java generate a keystore and a certificate for this server

application. See the next slide for an example.

• We’ll use the same keystore for both the server and the client

although in reality these are often different. The client’s

truststore, in real-world applications, would contain trusted

certificates, such as those from certificate authorities (e.g.

VeriSign (www.verisign.com), etc.).

http://www.verisign.com/
http://www.verisign.com/
http://www.verisign.com/
http://www.verisign.com/
http://www.verisign.com/

CNT 4714: Java Networking Part 3 Page 43 Mark Llewellyn ©

Creating Keystore and Certificate

Note requirements for password.

CNT 4714: Java Networking Part 3 Page 44 Mark Llewellyn ©

Creating Keystore and Certificate
Viewing the keystore contents

after its creation.

Notice the entry type is keyEntry

which means that this entry has a

private key associated with it.

CNT 4714: Java Networking Part 3 Page 45 Mark Llewellyn ©

Creating Keystore and Certificate

Export the certificate into a

certificate file.

Contents of the certificate.

CNT 4714: Java Networking Part 3 Page 46 Mark Llewellyn ©

Creating Keystore and Certificate

Import the certificate into a

new truststore.

CNT 4714: Java Networking Part 3 Page 47 Mark Llewellyn ©

Creating Keystore and Certificate
View the contents of the

truststore.

Note that the entry type is trustedCertEntry, which

means that a private key is not available for this entry. It

also means that this file is not suitable as a

KeyManager's keystore.

CNT 4714: Java Networking Part 3 Page 48 Mark Llewellyn ©

Launching the Secure Server

• Now you are ready to start the server executing from a

command prompt…

• Once started, the server simply waits for a connection from a

client. The example below illustrates the server after waiting

for several minutes.

Start the SSL Server executing with this

command where you replace this password

with the password you used when you set-

up the keystore.

CNT 4714: Java Networking Part 3 Page 49 Mark Llewellyn ©

Launching the SSL Client

• Start a client application executing from a new command

window…

• Once the client establishes communication with the server, the

authentication process begins.
Start the SSL Client application executing with this

command where you replace this password with the

password you used when you set-up the keystore.

Since we are using the same keystore for the

server and the client…these will be the same.

CNT 4714: Java Networking Part 3 Page 50 Mark Llewellyn ©

User enters username

and password which

are sent to the server.

Authentication successful –

user is logged on.

CNT 4714: Java Networking Part 3 Page 51 Mark Llewellyn ©

User enters username and

password which are sent to the

server. In this case the user enters

an incorrect password.

Authentication not successful –

user is not logged on.

